- 1 a When t = 0, x = 12.
 - $12~\mathrm{cm}$ to the right of O
 - When $t = 5, x = 5^2 7 \times 5 + 12$
 - $2~\mathrm{cm}$ to the right of O
 - $v=rac{dx}{dt}$ = 2t - 7
 - When t = 0, v = -7.
 - $7 \mathrm{cm/s}$ to the left
 - v = 0 when 2t 7 = 0d t=3.5
 - When t = 3.5,
 - $x = 3.5^2 7 \times 3.5 + 12$ = -0.25
 - t=3.5; the particle is 0.25 cm to the left of O.
 - Average velocity $=\frac{\text{change in position}}{-1}$ change in time

 - = -2 cm/s
 - distance travelled Average speed =change in time
 - For the first 3.5 s, the particle has travelled 12.25 cm.
 - From 3.5 s to 5 s, the particle has travelled 2 (-0.25) = 2.25 cm.
 - $Average\ speed = \frac{12.25 + 2.25}{5}$

 - $= 2.9 \ \mathrm{cm/s}$
- 2 a $v=rac{dx}{dt}$
 - = 2t 7
 - v=0 when 2t-7=0
 - $t=3.5~\mathrm{s}$
 - $a=rac{dv}{dt}$ $= 2 \; m/s^2$
 - When t = 0, x = 10.
 - When $t = 3.5, x = 3.5^2 7$
 - $\times 3.5 + 10$ = -2.25
 - For the first $3.5~\mathrm{s}$, the particle has travelled $12.25~\mathrm{m}$.
 - When $t = 5, x = 5^2 7 \times 5 + 10$
 - From $3.5 \mathrm{\ s}$ to $5 \mathrm{\ s}$, the particle has travelled $2.25 \mathrm{\ m}$.

$$\mathsf{d} \qquad v = 2t - 7 = -2$$

$$2t = 5$$

$$t = 2.5$$

$$x = 2.5^2 - 7 \times 2.5 + 19$$

$$= -1.25$$

After 2.5 s, when the particle is 1.25 m left of O.

3 a When
$$t = 0, x = -3$$
.

$$v=rac{dx}{dt}$$

$$at = 3t^2 - 22t + 24$$

When
$$t = 0, v = 24$$
.

 $3~\mathrm{cm}$ to the left of O and moving at $24~\mathrm{cm/s}$ to the right.

$$\mathsf{b} \quad \ v = \frac{dx}{dt}$$

$$=3t^2-22t+24$$

$$\mathbf{c} \quad v = 0 \text{ when }$$

$$3t^2 - 22t + 24 = 0$$

$$(3t-4)(t-6)=0$$

$$t=rac{4}{3} ext{ or } 6$$

After $\frac{4}{3}$ s and after 6 s

d When
$$t = \frac{4}{3}$$
,

$$egin{align} x &= \left(rac{4}{3}
ight)^3 - 11 imes \left(rac{4}{3}
ight)^2 + 24 imes \left(rac{4}{3}
ight) - 3 \ &= rac{64}{27} - rac{176}{9} imes rac{3}{3} + 32 - 3 \ &= -rac{464}{27} + 29 \ &=$$

$$= -\frac{464}{27} + 29$$
$$= 11 \frac{22}{27}$$

$$=11\ rac{22}{27}$$

When t = 6,

$$x = 6^3 - 11 \times 6^2 \times 6 - 3$$

$$= -39$$

39 cm to the left of O and 11 $\frac{22}{27}$ cm to the right of O

e
$$v<0$$
 when $(3t-4)(t-6)=0$

This is a parabola with a minimum value.

$$\therefore \quad v < 0 \text{ when } \frac{4}{3} < t < 6$$

$$\text{Length of time} = 6 - \frac{4}{3}$$

$$=\frac{14}{3}$$

$$=4rac{2}{3}~ ext{s}$$

$$\mathbf{f} \quad a = \frac{dv}{dt}$$
$$= 6t - 22 \text{ m/s}^2$$

$$6t - 22 = 0$$

$$t = \frac{22}{6} = \frac{11}{3}$$

$$v = 3t^2 - 22t + 24$$

$$= 3 \times \left(\frac{11}{3}\right)^2 - 22 \times \frac{11}{3} + 24$$

$$= \frac{121}{3} - \frac{242}{3} + 24$$

$$= 16\frac{2}{3}$$

$$x = \left(\frac{11}{3}\right)^3$$

$$= 11 \times \left(\frac{11}{3}\right)^2 + 24 \times \frac{11}{3} - 3$$

$$= \frac{1331}{27} - \frac{1331}{9} \times \frac{3}{3} + 88 - 3$$

$$= -13\frac{16}{27}$$

The acceleration is zero after $\frac{11}{3}$ s, when the velocity is 16 $\frac{1}{3}$ cm/s to the left and its position is 13 $\frac{16}{27}$ cm left of O.

a
$$v=6t^2-10t+4$$

When v = 0:

$$6t^2 - 10t + 4 = 0$$

 $3t^2 - 5t + 2 = 0$
 $(3t - 2)(t - 1) = 0$
 $t = \frac{2}{2}$ or 1

$$a = 12t - 10$$
 $t = \frac{2}{3}$:
 $a = 12 \times \frac{2}{3} - 10$
 $= -2$
 $t = 1$:

$$a = 12 \times 1 - 10$$

Velocity is zero after $\frac{2}{3}$ s when the acceleration is 2 cm/s^2 to the left, and after 1 s when the acceleration is 2 cm/s^2 to the right.

$$egin{aligned} \mathbf{b} & a = 12t - 10 \ & = 0 \ & t = rac{10}{12} = rac{5}{6} \end{aligned}$$
 Find v when $a = rac{5}{6}$:

$$v = 6t^2 - 10t + 4$$

$$=6 imes \left(rac{5}{6}
ight)^2 - 10 imes rac{5}{5} + 4$$
 $=rac{25}{6} - rac{50}{6} + 4 = -rac{1}{6}$

Acceleration is zero after $\frac{5}{6}$ s, at which time the velocity is $\frac{1}{6}$ cm/s to the left.

5 The particle passes through O when x = 0.

$$t^3 - 13t^2 + 46t - 48 = 0$$

Trial and error will give x = 0 when t = 2.

This means (t-2) is a factor of $t^3 - 13t^2 + 46t - 48$.

$$t^3 - 13t^2 + 46t - 48$$

= $(t - 2)(t^2 - 11t + 24)$
= 0

Factorising the quadratic gives

$$(t-2)(t-3)(t-8) = 0$$
 $t = 2, 3 \text{ or } 8$
 $v = \frac{dx}{dt}$
 $= 3t^2 - 26t + 46$
 $a = \frac{dv}{dt}$
 $= 6t - 26$

$$t=2$$
:

$$v=3\times 4-26\times 2+46$$

$$=6 \text{ cm/s}$$

$$a = 6 \times 2 - 26$$

$$= -14 \text{ cm}^2/\text{s}$$

$$t=3$$
:

$$v = 3 \times 9 - 26 \times 3 + 46$$

$$=-5 \text{ cm/s}$$

$$a = 6 \times 3 - 26$$

$$=-8 \text{ cm}^2/\text{s}$$

$$t = 8$$
:

$$v=3\times 64-26\times 8+46$$

$$=30 \text{ cm/s}$$

$$a = 6 \times 8 - 26$$

$$= -22 \text{ cm}^2/\text{s}$$

6 a They will be at the same position when

$$t^{\overset{\checkmark}{2}}-2t-2=t+2$$

$$t^2-3t-4=0$$

$$(t-4)(t+1)=0$$

$$t = 4 \text{ or } -1$$

After 4 s, or 1 s before the start.

(Note: In some cases, motion is not considered before t=0, and negative values of t may be discarded.)

b The velocities are $1~\mathrm{cm/s}$ and $2t-2~\mathrm{cm/s}$.

$$2t-2=1$$

$$2t=3$$

$$t=\frac{3}{2}$$

After
$$\frac{3}{2}$$
 s.